If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+8x-86=0
a = 1; b = 8; c = -86;
Δ = b2-4ac
Δ = 82-4·1·(-86)
Δ = 408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{408}=\sqrt{4*102}=\sqrt{4}*\sqrt{102}=2\sqrt{102}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{102}}{2*1}=\frac{-8-2\sqrt{102}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{102}}{2*1}=\frac{-8+2\sqrt{102}}{2} $
| 19=-5x-18x+(-90)+5 | | x+2(4–x)=2x+6-3x | | 4-3d=8-d | | (3x-8)-(4x-6)+(5x-2)(5x+2)=96 | | -3=w/4-7 | | 3–(x+2)=2x+3 | | 11x-2=-101 | | 3/5t-7=-8 | | 113q+ 2= 8 | | 30x=292.50 | | -n^2+6n-3=0 | | 4 k+ 12= 36 | | 12-6x=6(4+2x)+6 | | x+2(x-6)=x-1 | | x+(6x)=147 | | -2c=2c-12= | | 1/5y=-10 | | x^2-x-x=8 | | 9x-7=4x | | 9^(3x+2)=48 | | 9+-3p=-18 | | m=0.3*12 | | 2a+3=3a+5 | | 2x+3x=0.4 | | 1/4x+3/12=2(1/2x+3/4) | | 5c-3=2c+8 | | 6(w+8)-8w=32 | | Y*y+7y-98=0 | | -2(21+1)=2(-3x+1) | | Y2+7y-98=0 | | 2*3^(x+1)=54 | | 30=-40-(-5b) |